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ABSTRACT
We determine the self-similar solutions of the Cauchy problem

vt=-¢(v)xx, Xe@R, t>0,

(P)
vi{x,0) = g{(x)

for the constitutive function ¢(v) = max(0,v) and the model datum

(p+)xY, x>0

gix) = (D)

-(p_)lxIY, x<0

where Y,pt > 0. It is shown that the unique solution of (P), (D) is

x < -x't

tY/zﬂ-x—_), x » ~xvt
vt

-(p_)|x|Y,
vix,t) =

where

2 \\
viE) = [b,mn_Y_,(j—E) + bztz)ny(-}_‘:-)]exp(-g—-J , @
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K 1+ K ‘2
P = Py/p. = (Fz) D_y-ql= };)e"pla—) ’

[ 4
Dv(') denotes the parabolic cylinder function of index v. A ,
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SIGNIFICANCE AND EXPLANATION
Degenerate parabolic equations arise in the description of melting
processes, gas dynamics and certain bioclogical models. The interfaces
corresponding to degeneracies in the constitutive function usually separate

different media in the physical problem.

The particular problem stated in the abstract is related to nonlinear

diffusion equations with _nonmonotone constitutive functions,as has been

wt’\a
digcussed in [RN1-3). QIn this report‘uufobtain self-gimilar solutions for (P)

for a class of model initial data. The qualitative behavior of these
solutions, in particular of their interfaces, is typical of the situation in

they
more general problems. In a subsequent report with Vazquez [HNV] we use such

self-similar solutions as comparison functions to study the regularity and the

behpvior for small time of the interfaces for problem (P) with
P ph
¢(v) = max(0,¥(v)) where § is strictly monotone increasing.

S

. The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report. T
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SELF SIMILAR SOLUTIONS FOR A DEGENERATE CAUCHY PROBLEM

Klaus H3llig and John A. Nohel

1. INTRODUCTION AND RESULT. In this note we study certain aspects of

the degenerate Cauchy problem

Ve = 4(V) ., xXER t>0, P

v(x,0) = g(x)
for the constitutive function ¢(v) = max(v,0). We assume that the initial
data g are smooth on R\{0} with at most polynomial growth at infinity and
satisfy

xg(x) >0, x# 0,
g(0) =0 .

Problems of this type arise as convexifications of diffusion equations
with nonmonotone constitutive functions as has been discussed in [HN1]. The
behavior of solutions for (P) is similar to the one phase Stefan problem
where g(x) £ =1 for x < 0. Existence and uniqueness of weak sclutions of
(P) follows from nonlinear semigroup theory [BCP,E]. Moreover, using standard
approximation arguments one can show the existence of a continuous monotone
decreasing free boundary ¢t * s(t) where vis(t)*,t) = 0.

The pair (v,s) satisfies the free boundary problem

Ve = Vyer X > 8(t), >0,

v(x,0) = g(x), x>0,

vistt)*,t) = 0, ()
gis(t))s'(t) = v (s(t),¢) ,

s(0) =0 .
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Conversely, the solution v of (P) extended by v(x,t) = g(x) for x < s(t)
is a weak solution of (P).
We are interested in the regularity and the qualitative behavior of the
free boundary for small t. Here we consider only the model datum
p+xY, x 2?0,
g(x) = (D)
‘P_'x’Yl x<o0,
where pt'Y > 0 are given constants. For this case problem (P) has self-
similar solutions which can be determined explicitly. The problem (P) with
more general initial data will be included in a joint paper with J. Vazquez

[HNV] where we use such self-gimilar solutions as comparison functions.

Proposition. For the model datum (D) problem (PF) has the unique self-

similar solution

vix,t) = tY/zw(f_-_Jl x> s(t), t>0
t

where Y(°¢) is the unigue solution of the ordinary differential equation (1)
below, satisfying the initial conditions (2) and condition (3) at infinity.

The free boundary is s(t) = -K/:, t >0, For p :=p,/p_. >0 given, x > 0

is the unigque solution of the equation
(3 K K2
p= (.{.;_) D-Y-1[- —2'exP(8_) . (E)

where D-Y-1(.) is the parabolic cylinder function of index (-y - 1).

In the forthcoming paper with Vazquez [HNV] we will use the above
Proposition to analyse (P) for more general constitutive functions and more

general data; we assume there that ¢ is smooth on ([0,») with 0 <

c € ¢'<C, ¢(v) 20 for v € 0 and that the more general data satisfy

G(x) = g(x) + o(lx'Y) (|x| +0) ,

e
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where g is the model datum. Then it will be shown that

s(t) = =x/9' (0T )t + o(VO) (£ V O)

with k defined as before. For ¢(v) = max(0,v) and Y = 1 we proved in

[HN2,3] the stronger result

1/2+a

s(t) = =/t + o(t ) (t v 0)

for any a < 1/2. 1In this case (E) reduces to

o
p= ;—2 + -:—- exp(:—z) {g exp(-y2/4)dy .
Note, that a first order expansion of the equation g(s(t))a'(t) = vx(l(t),t)
in (B) formally yields a different result, namely
(p_)s(t)s'(t) = (pg) + o0,
which yields
8(t) = = /2pt + eoe ,
whereas, e.g. for p= 1, k = ,9034 ... # Y2. The reason for this apparent

inconsistency is that all derivatives of v become singular at

(x,t) = (0,0); 4in particular v, is not continuous at this point.
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2., PROOF OF THE PROPOSITION. Substituting v(x,t) =
one sees that ¥ must satisfy the linear differential equation
29" (E) + EP*(E) - YW(E) =0 for £ > ~ , (1)

subject to the initial conditions

Y+1
2

K

Y(-x) = 0, y'(~x) = (p_) (2)
and Kk 1is related to pt via
lim £ Yy(£) = p, . (3)
Er4m
The free boundary is given by
s(t) = -/t .

Equation (1) can be solved explicitly. Put x = E/2 and w(E) = y(x).

Then (1) becomes

wh(x) + xw'(x) - Yw(x) =0 . (4)
Setting w(x) =: y(x)exp(-x2/4) we obtain .
1 x2
y"(x) - (5-+ Y + z—)y(x) =0 . (s)

This differential equation has the general solution [B, p. 116~117]

y(x) = b 1(x) + bzoy“"" (== ¢ x<¢o», Yy >0),

1D-Y-
where Dv(') is the parabolic cylinder function of index v. Thus the

general solution of (1) is
£ i€ -¢?
V() = [b1D'Y‘1(f_2‘) + b2DY(/E)]exp( 8 ) (6)

for -» ¢ f <® and Y > 0. To impose the initial conditions (2) we need the

formulae (above ref. p. 119) N
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Then the initial conditions (2) yield the pair of equations

K iy o
b1D_Y_1(- _/E) + bsz(- —/‘;‘) 0

Y+l
K ik K
b1ny(- 2) ivyb,p, (-~ =) =p

2
exp(5-)
2 v-1 /3 - /3 8

Because (5) is of self-adjoint form the Wronskian of DY(-), D (¢) 1is

-Y-}

constant,

- + 1
W(D_,_,(*),D () = -1exp[ (L-5—)r1]

2
Y+1 ik K

(p- )K D ( - -—) exp(-——)
Y /3 8

b (k) = —
1 7 expl (15— )n1]
Y+1 K nz
(p_)x D-Y- 1(- -'l:)exp(g-)
b, (x) = - 2

/2 exp[(Y 1)1!1]

and (6) with bq,hy given by (8) is the solution of (1) satisfying the

initial conditions (2). To compute the limit in (3) we use (see above ref. p.

122)
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2
D,(2) = 2’ exp( - %—J[1 +0(]2]"2)) as Jz| + =, (9)
which is valid for - 3% < arg ¢ <3 . musfor Eem y>o0,
2 -Y=1 -
°-y-1(§:J = exp(- %—J(f:) 1+ og]™), g4 4.,
2 2

11+ 0(|E]™%)), £+ 4= . (10)

2 Y
i £ (& iywx
o8] = el [explf)
| Y2 8z 2
Substitution of (10) and (8) into the general solution (6) yields
iywy\ (€ Y
¥(E) = by()exp(TT)(3) (14001, £ v, (11)
/2
From formula (8) we see that
b, (k)exp(iXL) = i LU (- & exp(-'i) (12)
2 2 /7 -y=1 5) 8

Imposing the asymptotic condition (3) and using (11), (12) we finaliy obtain

Y+1 2
QT T ) P el

which yields the equation (E).
To complete the proof of the Proposition we have to show that given any

p > 0, (B) is uniquely solvable for x. From [BO, p. 573)
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-Y=1 /3) Y+t (2n)1 * >
2 2 r(r+ 5
. (14)
n o 82n+1 x 2+
+ L T &) '
0 (2n + 1)! /3
! 2,01 + Y 2
2°T(=5)
is an analytic function of x, ~® < K < ®, Yy > ~1; ag = a4 = 1,
! /x Since

n =
an42 = (v +‘5)an +7 (n= Vaj,, and D-Y'1(O) 2‘Y+1’/2r(1 " l) .
the coefficients a, are positive, D'Y‘1(- 5:) is a positive, gttictly
/2

increasing function of x for 0 < Kk < «, and by (14) so is p(x). Moreover

p(0) = 0. Also using (14) in (E)

Y+1
x (5= (x + 0%) .

RN (‘_)Yexp(ﬁ)

(¢ + 4@) ,

and therefore, from (E)

/i; 27+1 Kz
P(X) = T T (?_;) exp(z=) (x> +=) .
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20. ABSTRACT - cont'd.

(p+)xy, x>0
g(x) = y (D) .
-(p_)lxl ¢+ x€0
where Y,pt > 0. It is shown that the unique solution of (P), (D) is
=) |x|Y,  x < -/t
vix,t) =
t24(%), x> =/t
7t
where
2
i
V(E) = [b1(n<)D_Y_1(-572_) + bz(x)DY(—/%)]exp(- %-J '
Y+1 ik K2
px o (- /—_)exp(a—)
2
12 exp(l—--2 wi)
2
oo (- SJexeli)
b (k) = 2 1
2 12 exp('lri ];—)
and k 1is implicitly determined by the equation *
Y+1 2
K K K
p=p/p. = (=) »D__,(-=)exp(z-) s :
2 -/ 8

D ()

v denotes the parabolic cylinder function of index v.
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